Abstract
Polyphosphoinositides (PPI) play crucial roles in cellular signaling and functions. However, comprehensively determining the changed levels of these species during different cellular processes has faced difficulties. Herein, we applied a novel methylation pattern recognition and simulation approach, and we exploited newly derived fragmentation patterns of methylated PPI species for comprehensive analysis of PPI species including phosphate position(s) and fatty acyl chains capable of circumpassing previous limitations. The developed method was applied for quantitative analysis of PPI species present in diabetic mouse cortex and liver, and it allowed us to unravel the marked reduction of PPI levels in brain cortices of db/db mice for the first time. Taken together, we developed a powerful and high-throughput method for comprehensive analysis of PPI species, which should greatly contribute to the elucidation of PPI biology under different disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.