Abstract
Rear-end collisions are the single most frequent type of crash on freeways. Their impact on freeway operation is also most noticeable because almost all of them occur during periods of medium to heavy demand. Preliminary explorations of average traffic speeds before a crash measured at loop detector stations surrounding the crash location showed that rear-end crashes can be placed into two mutually exclusive groups: first, those that occur under extended congestion and, second, those that occur with relatively free-flow conditions prevailing 5 to 10 min before the crash. With loop detector data preceding these two groups of rear-end crashes contrasted with randomly selected noncrash data, it was found that the first group can be attributed to parameters such as the coefficient of variation in speed and average occupancy measurable through loop detectors at stations in the close vicinity of the crash location. For the second group, traffic parameters such as average speed and occupancy at stations downstream of the crash location were significant as were off-line factors such as the time of day and presence of an on-ramp in the downstream direction. It was also observed that traffic conditions belonging to the first segment occurred rarely on the freeway but still made up about half the rear-end crashes. This observation, along with neural network–based classifiers, has been used to propose a strategy for real-time identification of conditions prone to the rear-end crashes. The strategy can potentially identify almost 75% of rear-end crashes, with reasonable false alarms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.