Abstract

Atherosclerosis (AS) is a major contributor to a variety of negative clinical outcomes, including stroke and myocardial infarction. However, the role and therapeutic value of hypoxia-related genes in AS development has been less discussed. In this study, Plasminogen activator, urokinase receptor (PLAUR) was identified as an effective diagnostic marker for AS lesion progression by combining WGCNA and random forest algorithm. We validated the stability of the diagnostic value on multiple external datasets including humans and mice. We identified a significant correlation between PLAUR expression and lesion progression. We mined multiple single cell-RNA sequencing (sc-RNA seq) data to nominate macrophage as the key cell cluster for PLAUR mediated lesion progression. We combined cross-validation results from multiple databases to predict that HCG17-hsa-miR-424-5p-HIF1A, a competitive endogenous RNA (ceRNA) network, may regulate hypoxia inducible factor 1 subunit alpha (HIF1A) expression. The DrugMatrix database was used to predict alprazolam, valsartan, biotin A, lignocaine, and curcumin as potential drugs to delay lesion progression by antagonizing PLAUR, and AutoDock was used to verify the binding ability of drugs and PLAUR. Overall, this study provides the first systematic identification of the diagnostic and therapeutic value of PLAUR in AS and offers multiple treatment options with potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.