Abstract

The combined process of flocculation and filtration can improve algae harvesting performance by combining the benefits of both and overcoming the drawbacks. The entire process was thoroughly examined in this study, considering technical and economic feasibility under a variety of operating situations. Dead-end filtration was performed to evaluate the harvesting performance, the removal of extracellular organic matter and the changes of flocs. Cross-flow filtration was then carried out to explore the effect of operating parameters on permeate flux and assess the technical and economic feasibility. The optimum operating condition was to use 5 mg/L cationic polyacrylamide with 25 μm pore size and 0.1 m/s cross-flow velocity, under which a high harvesting efficiency of 95.2 %, a high average permeate flux of 55.5 m3/(m2 h) and a volumetric reduction factor of 118.9 were achieved. Algal floc analysis revealed that flocs formed by ferric chloride and polyaluminium sulfate tended to partially deconstruct into smaller pieces during the filtration process. In contrast, flocs formed by cationic polyacrylamide tended to aggregate into bigger flocs, which, when paired with the effect of flocculant dosage and membrane pore size, could explain the difference in filtration performance and membrane permeance. No negative effect on downstream technology was observed for the combined process. A significantly lowered estimated total cost of 0.139 $/kg under optimum operating condition was obtained compared to filtration without flocculation assisted (0.206 $/kg).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call