Abstract

This paper analyzes the 2-D short-channel effect in ultrathin SOI MOSFETs. An empirical, channel length-dependent scale length is extracted from the lateral field slope of a series of numerically simulated devices. We show how this scale length is related to the short-channel threshold voltage roll-off and minimum channel length with and without a substrate bias. The benefit of a reverse substrate bias is investigated and understood in terms of the field and distribution of inversion charge in the silicon film. In particular, how a bulk-like short-channel effect is achieved when an accumulation layer is formed at the back surface. Furthermore, the effect of a high-κ gate insulator is studied and scaling implications discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call