Abstract

The objective of this study was the optimization and comparison of two extraction methods for the determination of polycyclic aromatic hydrocarbons (PAHs) in wastewater (WW). A distribution study of the target compounds between the aqueous phase and the suspended particulate matter (SPM) has been performed in order to establish whether the analysis of both phases is necessary. In this sense, the feasibility of stir bar sorptive extraction (SBSE) and solid-phase extraction (SPE) for the determination of 24 PAHs in WW samples has been evaluated. The results demonstrated the suitability of SBSE to perform a comprehensive analysis of liquid samples containing high amounts of SPM, such as in the determination of PAHs in WWs. A gas chromatography triple quadrupole mass spectrometry (GC–QqQ-MS/MS) method has been also optimized for the separation and detection of the target compounds, avoiding the co-elution of some groups of isomers, such as benzo[ b], [ j] and [ k] fluoranthenes and indene[1,2,3- cd]pyrene/dibenz[ a, h]anthracene. For that purpose, a specific capillary column developed for PAH determination was used. The SBSE procedure was validated and adequate parameters (such as recovery, linearity, precision, limits of detection and quantification) were obtained. Finally, the validated method was applied to the analysis of real samples collected from an experimental WW treatment plant, detecting some PAHs at concentrations in the range 0.007–0.022 μg L −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.