Abstract

A large section of the world's population is affected by diabetes mellitus (DM), commonly referred to as "diabetes." Every year, the number of cases of DM is increasing. Diabetes has a strong genetic basis, hence it is very difficult to cure, but can be controlled with medications to prevent subsequent organ damage. Therefore, early diagnosis of diabetes is very important. In this paper, we examine how diabetes affects cardiac health, which is reflected through heart rate variability (HRV), as observed in electrocardiography (ECG) signals. Such signals provide clues for both the presence and severity of diabetes as well as diabetes-induced cardiac impairments. Heart rate (HR) is a non-linear and non-stationary signal. Thus, extracting useful information from HRV signals is a difficult task. We review several sophisticated signal processing and information extraction methods in order to establish measurable relationships between the presence and the extent of diabetes as well as the changes in the HRV signals. Furthermore, we discuss a typical range of values for several statistical, geometric, time domain, frequency domain, time–frequency, and non-linear features for HR signals from 15 normal and 15 diabetic subjects. We found that non-linear analysis is the most suitable approach to capture and analyze the subtle changes in HRV signals caused by diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call