Abstract

Background Epigenetic mechanism plays an important role in endometrial carcinoma (EC). This study was designed to analyze the epigenetic mechanism between DNA methylation-driven genes (DEDGs) and drugs targeting DEDGs and to develop a DEDG score model for predicting the prognosis of EC. Methods Expression profile and methylation profile data of PD-1-negative EC samples were obtained from TCGA. To obtain intersected DEDGs, differentially expressed genes (DEGs) and differentially methylated genes from tumor tissues and normal tissues were analyzed by limma. A linear discriminant classification model was constructed using the gene expression profile of DMDGs, methylation profile of TSS1500, TSS200, and gene body regions. Principal component analysis (PCA) and ROC analysis were conducted. The protein-drug interactions analysis of DMDGs was performed using Network Analyst 3.0 tool. Lasso Cox regression analysis was used to screen prognostic DNA methylation driving gene and to build a risk score model. The ROC curve and Kaplan-Meier survival curve were plotted to evaluate the model prediction capability. Results A total of 96 DMDGs were screened from the three regions, distributed on 22 chromosomes, with consistent methylation patterns in different gene regions. Both the expression profile and methylation profile of the three regions can neatly distinguish tumor samples from normal ones, with a high classifying performance. A gene signature, which consisted of ELFN1-AS1 and ZNF132, could classify EC patients into a high-risk group and low-risk group. Prognosis of the high-risk group was significantly worse than that of the low-risk group. The risk model showed a high performance in predicting the prognosis of EC. Conclusion We successfully established a risk score system with two DMDGs, which showed a high prediction accuracy of EC prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call