Abstract

AbstractWhile 3‐dimensional (3D) printing technology is advancing rapidly, commonly used filament materials are struggling to meet growing expectations. Polyamide (PA) is a material with high potential to replace commonly used low‐performance filament materials, thanks to its cost‐effectiveness and optimal material properties compared to advanced engineering materials. To explore this potential, the thermal, thermomechanical, and mechanical properties (at different temperatures), as well as the wear characteristics, of PA, short carbon fiber reinforced‐PA (SCFR‐PA), and short glass fiber reinforced‐PA (SGFR‐PA) filaments were comparatively examined in this study. Differential scanning calorimeter analysis (DSC), Dynamic Mechanical Thermal Analysis (DMA), uniaxial tensile tests, and Shore D hardness tests were conducted on the 3D printed specimens. The yield strength decreased by 48% and 73%, respectively, for neat PA as compared to room temperature when tested at 40 °C and 60 °C, while for SCFR‐PA, it decreased by 40% and 60%, and for SGFR‐PA, it decreased by 33% and 48%, respectively. The findings obtained from wear tests conducted on both bottom and top surfaces have demonstrated that glass reinforcement yields better results than carbon reinforcement. The experimental findings have been compared with SEM images, revealing their consistency.Highlights This study focuses on the performance evaluation of 3D printed PA and its composites. The mechanical properties of the materials at different temperatures were compared. Adhesive wear behavior is not directly related to fiber type, wear surface or hardness. Morphological analysis was conducted to elucidate the influence of fiber type on mechanical properties and wear behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.