Abstract

BackgroundStudies have demonstrated that Sorting nexin 7 (SNX7) functions as an anti-apoptotic protein in liver tissue and plays a crucial role in the survival of hepatocytes during early embryonic development. However, its diagnostic and prognostic value as well as the predictive value of chemotherapy and immunotherapy have not been reported in hepatocellular carcinoma (HCC).MethodsSNX7 mRNA expression and its diagnostic efficacy were examined in GEO datasets, and the findings were further confirmed in TCGA, ICGC cohorts, and cell lines. The protein level of SNX7 was determined using CPTAC and HPA databases, and the results were validated through immunohistochemistry (IHC). Survival analyses were performed in TCGA and ICGC cohorts, and the results were subsequently validated via Kaplan–Meier Plotter. The response to chemotherapy and immunotherapy was predicted via GDSC dataset and TIDE algorithm, respectively. R packages were employed to explore the relationship between SNX7 expression and immune infiltration, m6A modification, as well as the functional enrichment of differentially expressed genes (DEGs).ResultsThe expression of SNX7 at both mRNA and protein levels was significantly upregulated in HCC tissues. SNX7 exhibited superior diagnostic efficacy compared to AFP alone for HCC detection, and combining it with AFP improved the diagnostic accuracy for HCC. High SNX7 was associated with unfavorable outcomes, including poor overall survival, disease-specific survival, progression-free survival, and advanced pathological stage, in patients with HCC, and SNX7 was identified as an independent risk factor for HCC. Moreover, elevated SNX7 expression was positively correlated with increased sensitivity to various chemotherapy drugs, including sorafenib, while it was associated with resistance to immunotherapy in HCC patients. Correlation analysis revealed a relationship between SNX7 and multiple m6A-related genes and various immune cells. Finally, enrichment analysis demonstrated strong associations of SNX7 with critical biological processes, such as cell cycle regulation, cellular senescence, cell adhesion, DNA replication, and mismatch repair pathway in HCC.ConclusionsOur study highlights the association of SNX7 with the immune microenvironment and its potential influence on HCC progression. SNX7 emerges as a promising novel biomarker for the diagnosis, prognosis, and prediction of response to chemotherapy and immunotherapy in patients with HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call