Abstract
In this paper, a novel combined heating and power (CHP) system is proposed to realize full-scale utilization of geothermal energy and efficient multi-generation, which not only performs preferable overall performance than previous homogeneous system, but also offers an effective energy cascade utilization approach for self-condensing transcritical CO2 (TCO2) Rankine cycle. Based on the established mathematical models, the performance comparison is conducted for proving the superiority of the novel CHP system. Then, an overall performance analysis is implemented to reveal the combined effects for six key parameters on system thermodynamic, exergoeconomic and exergoenvironmental performances. Furthermore, multi-objective optimization considering system overall performance is conducted. The results show that for the novel CHP system, the largest relative improvement rate of system exergy efficiency (ηexg) and declining rate of total unit product exergy cost (cP,total) versus the previous CHP system are 15.03 % and 18.89 %, respectively. The final optimization results of ηexg, cP,total and total unit product exergy environmental impact (bP,total) are determined as 51.10 %, 14.12 $/GJ and 9.00 mPts/GJ, respectively. This paper fulfills an elaborate performance analysis and optimization for the novel CHP system, which fills the research gap of efficient and promising CHP system based on self-condensing TCO2 Rankine cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.