Abstract

The brake system is one of the most critical components in transportation, especially for massive machines such as trains. Brake components decelerate the train by using friction force between the train wheels and the brake block. The efficacy of a brake system strongly depends on the quality of the material components, especially the brake blocks. This study investigated the failure brake block on three different model of brake blocks used in Indonesia (grey cast iron, composite, and magnetic composite). Several characteristics and evaluations are used, i.e., non-destructive surface analysis, microhardness, Energy Dispersive X-Ray (EDX) analysis, and computational Finite Element Method (FEM). The microscopic analysis showed severe conditions at the non-magnetic brake, followed by the magnetic brake. The roughness test indicates that the Ra value for the magnetic brake is higher than the non-magnetic composite brake, with 4.59 and 4.08, respectively. The micro hardness test revealed that in metal-based materials indentation, the results showed magnetic composite has the highest value followed by cast iron and non-magnetic composite with 306, 283, and 218, respectively. In EDX examination, magnetic brakes have filler materials such as Calcium Carbonate and Wollastonite that create better performance. The study showed that the magnetic composite brake blocks demonstrate adequate resistance to failure due to the composite's filler material, which acts as a reinforcing agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call