Abstract
Over the past 10 years, numerous studies were performed to better understand the behaviour of the glass syntactic foams used as thermal insulation of pipes for deepwater production. The obtained results outlined some specific behaviour of polymeric syntactic foams reinforced by glass microballoons in service conditions: both water uptake and mechanical stress have a key impact on thermal properties. This article focuses first on the wet behaviour of glass syntactic foams. The effect of water is investigated to better model the nature of water diffusing in syntactic foams with and without a topcoat protection. Secondly, the effect of hydrostatic pressure on coated structure is addressed by using a confined compression test. As polymer material is bonded to the steel surface, it is not submitted to pure hydrostatic loading but to non-spherical loading in the vicinity of the pipe. The confined compression test is then chosen to represent these non-spherical loadings of material. The rupture of glass microballoons is monitored by acoustic emission for different matrices and attempts are made to quantify the resulting acoustic emission signals by comparison with prior tomography results. These experimental analyses provide a better understanding of the main factors affecting the functional properties of syntactic foams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.