Abstract

ON THE CORROSION MECHANISMS OF Al-Cu-Li ALLOYS: AN INVESTIGATION USING GLOBAL AND LOCAL ELECTROCHEMICAL TECHNIQUES. In this study, the corrosion mechanism of an Al-Cu-Li alloy manufactured by two different treatment routes (T3 and T851) was evaluated by immersion and electrochemical tests in solutions containing chloride ions (Cl-). For both alloys, the formation of cavities on the surface was associated with micrometer-sized intermetallics (IM’s), however, in addition to this attack, the alloy submitted to T851 treatment also presented an attack called severe localized corrosion (SLC), caused by the preferential attack to the nanometric T1 (Al2CuLi) phase. The electrochemical concepts involved in these two types of attacks were discussed. During the IM’s corrosive process, whereas the O2 reduction occurred over the IM’s, the Al dissolution is favored around the particle, forming trenching and cavities (with 2 and 6 mm of depth). On the other hand, the mechanism associated with the SLC is related to the formation of a differential aeration cell followed by the evolution of H2, with greater depth of attack penetration (8 and 35 mm). Additionally, by the use of the Scanning Vibrating Electrode Technique (SVET), it was concluded that the higher anodic currents observed for the T851 temper were related to the relation between the anodic area (Aa) and the cathodic area (Ac).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.