Abstract
AbstractCoastal urban areas like New York City (NYC) are more vulnerable to urban pluvial flooding particularly because the rapid runoff from extreme rainfall events can be further compounded by the co-occurrence of high sea-level conditions either from tide or storm surge leading to compound flooding events. Present-day urban pluvial flooding is a significant challenge for NYC and this challenge is expected to become more severe with the greater frequency and intensity of storms and sea-level rise (SLR) in the future. In this study, we advance NYC’s assessment of present and future exposure to urban pluvial flooding through simulating various storm scenarios using a citywide hydrologic and hydraulic model. This is the first citywide analysis using NYC’s drainage models focusing on rainfall-induced flooding. We showed that the city’s stormwater system is highly vulnerable to high-intensity short-duration “cloudburst” events, with the extent and volume of flooding being the largest during these events. We further showed that rainfall events coupled with higher sea-level conditions, either from SLR or storm surge, could significantly increase the volume and extent of flooding in the city. We also assessed flood exposure in terms of the number of buildings and length of roads exposed to flooding as well as the number of the affected population. This study informs NYC’s residents of their current and future flood risk and enables the development of tailored solutions to manage increasing flood risk in the city.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.