Abstract

Given the intertwined physicochemical effects exerted in vivo by both natural and synthetic (e.g., biomaterial) interfaces on adhering cells, the evaluation of structure-function relationships governing cellular response to micro-engineered surfaces for applications in neuronal tissue engineering requires the use of in vitro testing platforms which consist of a clinically translatable material with tunable physiochemical properties. In this work, we micro-engineered chitosan substrates with arrays of parallel channels with variable width (20 and 60 μm). A citric acid (CA)-based crosslinking approach was used to provide an additional level of synergistic cueing on adhering cells by regulating the chitosan substrate's stiffness. Morphological and physicochemical characterization was conducted to unveil the structure-function relationships which govern the activity of rat dorsal root ganglion neurons (DRGs) and human mesenchymal stem cells (hMSCs), ultimately singling out the key role of microtopography, roughness and substrate's stiffness. While substrate's stiffness predominantly affected hMSC spreading, the modulation of the channels' design affected the neuronal architecture's complexity and guided the morphological transition of hMSCs. Finally, the combined analysis of tubulin expression and cell morphology allowed us to cast new light on the predominant role of the microtopography over substrate's stiffness in the process of hMSCs neurogenic differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.