Abstract
Scalability and availability are key features of parallel database systems. To realize scalability, many dynamic load-balancing methods with data placement and parallel index structures on shared-nothing parallel infrastructure have been proposed. Data migration with range-partitioned placement using a parallel Btree is one solution. The combination of range partitioning and chained declustered replicas provides high availability while preserving scalability. However, independent treatment of the primary and backup data in each node results in long failover times. We propose a novel method for compound treatment of chained declustered replicas using a parallel Btree, called the Fat-Btree. In the proposed method, the single Fat-Btree provides access paths to both primary and backup data in all processor elements, which greatly reduces failover time. Moreover, it enables dynamic load balancing without physical data migration, and improves memory space utilization for processing the index. Experiments using PostgreSQL on a 160-node PC cluster demonstrate the effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.