Abstract

The compound secure groupcast problem is considered, where the key variables at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> receivers are designed so that a transmitter can securely groupcast a message to any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> out of the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> receivers through a noiseless broadcast channel. The metric is the information theoretic tradeoff between key storage <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> , i.e., the number of bits of the key variable stored at each receiver per message bit, and broadcast bandwidth <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> , i.e., the number of bits of the broadcast information sent by the transmitter per message bit. We have three main results. First, when broadcast bandwidth is minimized, i.e., when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\beta = 1$ </tex-math></inline-formula> , we show that the minimum key storage is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha = N$ </tex-math></inline-formula> . Second, when key storage is minimized, i.e., when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha = 1$ </tex-math></inline-formula> , we show that broadcast bandwidth <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\beta = \min (N, K-N+1)$ </tex-math></inline-formula> is achievable and is optimal (minimum) if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N=2$ </tex-math></inline-formula> or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K-1$ </tex-math></inline-formula> . Third, when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N=2$ </tex-math></inline-formula> , the optimal key storage and broadcast bandwidth tradeoff is characterized as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha +\beta \geq 3, \alpha \geq 1, \beta \geq 1$ </tex-math></inline-formula> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call