Abstract

Errors-in-variable (EIV) regression is often used to gauge linear relationship between two variables both suffering from measurement and other errors, such as, the comparison of two measurement platforms (e.g., RNA sequencing vs. microarray). Scientists are often at a loss as to which EIV regression model to use for there are infinite many choices. We provide sound guidelines toward viable solutions to this dilemma by introducing two general nonparametric EIV regression frameworks: the compound regression and the constrained regression. It is shown that these approaches are equivalent to each other and, to the general parametric structural modeling approach. The advantages of these methods lie in their intuitive geometric representations, their distribution free nature, and their ability to offer candidate solutions with various optimal properties when the ratio of the error variances is unknown. Each includes the classic nonparametric regression methods of ordinary least squares, geometric mean regression (GMR), and orthogonal regression as special cases. Under these general frameworks, one can readily uncover some surprising optimal properties of the GMR, and truly comprehend the benefit of data normalization. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.