Abstract

We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula EI=1−1/JTp(x0), and recovering the Polya-Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.