Abstract

Empirical point processes of exceedances play an important role in extreme value theory, and their limiting behaviour has been extensively studied. Here, we provide explicit bounds on the accuracy of approximating an exceedance process by a compound Poisson or Poisson cluster process, in terms of a Wasserstein metric that is generally more suitable for the purpose than the total variation metric. The bounds only involve properties of the finite, empirical sequence that is under consideration, and not of any limiting process. The argument uses Bernstein blocks and Lindeberg's method of compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.