Abstract

We report on the simulation and characterisation of compound phase-shifted fiber Bragg structures for use as novel in-fiber magneto-optical point sensors. Through simulation we show that the Faraday rotation spectra of phase-shifted gratings can be tailored by tuning the ratio of substructure lengths. A design process for tailoring the magneto-optical spectrum is illustrated, and it is shown that a general optimum structure exists for producing a region of total reflection incorporating magneto-optical Faraday rotation that is enhanced both in strength and spectral width. A practical optical fiber system that exploits the proposed distributed feedback (DFB) structures to enable novel all-fiber sensors for the dual measurement of magnetic field strength and temperature is described in detail, and the sensor response is simulated. The study is supported by laboratory fabrication of the proposed fiber DFB structures which demonstrates the principle of enhancement in terms of tailored group delay spectra and highlights practical issues for sensor packaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.