Abstract

Metasurfaces allow tailored control of electromagnetic wave fronts. However, due to local conservation of power flow, passive, lossless, and reflectionless metasurfaces have been limited to imparting phase discontinuities-and not power density discontinuities-onto a wave front. Here, we show how the phase and amplitude profiles of a wave front can be independently controlled using two closely spaced phase-discontinuous metasurfaces. The two metasurfaces, each designed to exhibit spatially varying refractive properties, are separated by a wavelength-scale distance and together form a compound metaoptic. A method of designing the compound metaoptic is presented, which enables transformation between arbitrary complex-valued field distributions without reflection, absorption, polarization loss, or active components. Such compound metaoptics may find applications in the optical trapping of particles, displaying three-dimensional holographic images, shrinking the size of optical systems, or producing custom (shaped and steered) far-field radiation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.