Abstract

BackgroundAtaxia-telangiectasia is a rare autosomal recessive, neurodegenerative disorder caused by alterations in the ATM gene. The majority of ATM pathogenic variants are frameshift or nonsense variants which are predicted to truncate the whole ATM protein. Herein, we report on an ataxia telangiectasia child with atypical phenotype who was identified as compound heterozygous for two ATM variants involving a previously described pathogenic single nucleotide variation (SNV) and a novel copy number variation (CNV).Case presentationA 6-year-old boy presented with delayed development and oculomotor apraxia. Brain magnetic resonance imaging showed interval development of mild atrophy in the cerebellum. Serum alpha fetoprotein level was in normal range. Next-generation sequencing and single-nucleotide polymorphism array tests were performed. Next-generation sequencing revealed a heterozygous nonsense pathogenic variant in ATM, c.742C > T (p.Arg248Ter) inherited from the father. Single-nucleotide polymorphism array revealed a compound heterozygous CNV, arr[GRCh37] 11q22.3(10851766–108183226) × 1, 31460 bp (exons 24–40 deletion of ATM) inherited from the mother, which was validated by reverse transcription-polymerase chain reaction analysis (RT-PCR). We demonstrated that this variant (NM_000051.4:c.3403_6006del) generated a product of in-frame deletion of exon 24–40 of ATM (p.Ser1135_Gln2002del).ConclusionsThe compound heterozygosity for ATM variants involving a previously described pathogenic SNV and a novel CNV may be associated with the atypical clinical manifestations. This clinical report extends the genetic and phenotypic spectrum of ATM pathogenic variants in atypical ataxia-telangiectasia, thus making implementation of advanced analysis beyond the routine next-generation sequencing an important consideration in diagnosis and rehabilitation services for children with ataxia-telangiectasia.

Highlights

  • Ataxia-telangiectasia is a rare autosomal recessive, neurodegenerative disorder caused by alterations in the ataxia telangiectasia mutated” (ATM) gene

  • The compound heterozygosity for ATM variants involving a previously described pathogenic single nucleotide variation (SNV) and a novel copy number variation (CNV) may be associated with the atypical clinical manifestations

  • This clinical report extends the genetic and phenotypic spectrum of ATM pathogenic variants in atypical ataxia-telangiectasia, making implementation of advanced analysis beyond the routine next-generation sequencing an important consideration in diagnosis and rehabilitation services for children with ataxia-telangiectasia

Read more

Summary

Conclusions

The compound heterozygosity for ATM variants involving a previously described pathogenic SNV and a novel CNV may be associated with the atypical clinical manifestations.

Background
Findings
Discussion and conclusions
Standing
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.