Abstract

Steroid 11β-hydroxylase deficiency (11β−OHD), which is caused by mutations of the CYP11B1 gene, is the second leading cause of congenital adrenal hyperplasia (CAH), an autosomal recessive inherited disorder. Here, we report a case of classic 11β−OHD in a Chinese boy characterized by hypertension, penile enlargement, skin pigmentation, and acne. Molecular analysis of CYP11B1 revealed that the patient was compound heterozygous for a c.217C > T (p.Q73X) mutation in exon 1 and a c.421C > T (p.R141X) mutation in exon 3. His parents carried the novel c.217C > T (p.Q73X) mutation and the prevalent c.421C > T (p.R141X) mutation. Furthermore, we identified a novel 217-bp substitution mutation (Q73X) in CYP11B1 that generates a truncated protein without biological activity, which is likely to be pathogenic. Pursuant to the phenotype of the proband and his family, the Q73X mutation is inferred to exacerbate the disease burden of the R141X mutation, a known pathogenic variant. To further explore this possibility, selecting the x-ray structure of human CYP11B2 as a template, we built three-dimensional homologous models of the normal and mutant proteins. In the mutant model, a change from a helix to terminal structure in amino acids 73 and 141 occurred that affected the binding capacity of CYP11B1 with heme and impaired 11β-hydroxylase activity. Taken together, our findings expand the spectrum of known mutations leading to 11β−OHD and provide evidence to study genotype-phenotype concordance, confirm early diagnosis and treatment of 11β−OHD, and prevent most complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call