Abstract

Polymicrogyria is caused by a diverse etiology, one of which is gene mutation. At present, only one gene (GPR56) is known to cause polymicrogyria, which leads to a distinctive phenotype termed bilateral frontoparietal polymicrogyria (BFPP). BFPP is an autosomal recessive inherited human brain malformation with abnormal cortical lamination. Here, we identified compound heterozygous GPR56 mutations in a patient with BFPP. The proband was a Japanese female born from non-consanguineous parents. She presented with mental retardation, developmental motor delay, epilepsy exhibiting the feature of Lennox–Gastaut syndrome, exotropia, bilateral polymicrogyria with a relatively spared perisylvian region, bilateral patchy-white-matter MRI signal changes, and hypoplastic pontine basis. GPR56 sequence analysis revealed a c.107G>A substitution leading to a p.S36N, and a c.113G>A leading to a p.R38Q. Although affected individuals with compound heterozygosity in GPR56 have not been previously described, we presume that compound heterozygosity of these two mutations in a ligand binding domain within the extracellular N-terminus of protein could result in BFPP. In addition, we observed unusually less involvement of perisylvian cortex for polymicrogyria, and Lennox–Gastaut syndrome for epilepsy, which are likely common features in patients with BFPP caused by GPR56 mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.