Abstract

ObjectiveWe studied whether the distribution of synaptic input from compound group I afferents onto the various-sized motoneurons in the human soleus muscle supports the size principle. MethodsThe subject lay prone on a physiotherapy table and electrical stimuli were delivered to the tibial nerve. The recordings were taken with surface electromyography (SEMG) and single motor unit (SMU) potentials. The relative sizes of SMUs were estimated using four different methods. After identifying the relative size of each SMU of the pair, normalised size of the H-reflex was determined using the extra spike per trigger (ESPT) method. ResultsIn total 33 SMU pairs were studied to compare results obtained in each pair. It was found that, although the stimulus intensity was identical for each pair, the ESPT values were statistically larger in the bigger SMUs compared with the relatively smaller SMUs (p<0.05). ConclusionsWe conclude that, within the limits of this study, compound group I excitatory input to soleus motoneurons in human subjects does not support the size principle which governs the recruitment order of motoneurons in the reduced animal preparations. SignificanceThis study illustrates the importance of performing human experiments to confirm or reject principles obtained using reduced animal preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.