Abstract

Owing to the character of diversity and complexity, the compound fault diagnosis of rotating machinery under non-stationary operation has turned into a challenging task. In this paper, a novel method based on the optimal variational mode decomposition (OVMD) and 1.5-dimension envelope spectrum is proposed for detecting the compound faults of rotating machinery. In this method, compound fault signals are first decomposed by using OVMD containing optimal decomposition parameters, and several intrinsic mode components are obtained. Then, an adaptive selection method based on the weight factor (WF) is presented to choose two intrinsic mode components that contain the principal fault characteristic information. Finally, the 1.5-dimension envelope spectrum of the selected intrinsic mode components is utilized to extract the compound fault characteristic information of vibration signals. The performance of the proposed method is demonstrated by using the simulation signal and the experimental vibration signals collected from a rolling bearing and a gearbox with compound faults. The analysis results suggest that the proposed method is not only capable of detecting compound faults of a bearing and a gearbox, but can separate the characteristic signatures of compound faults. The research offers a new means for the compound fault diagnosis of rotating machinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call