Abstract
An effective way to improve a classification method's performance is to create ensembles of classifiers. Two elements are believed to be important in constructing an ensemble: (a) the performance of each individual classifier; and (b) diversity among the classifiers. Nevertheless, most works based on diversity suggest that there exists only weak correlation between classifier performance and ensemble accuracy. We propose compound diversity functions which combine the diversities with the performance of each individual classifier, and show that there is a strong correlation between the proposed functions and ensemble accuracy. Calculation of the correlations with different ensemble creation methods, different problems and different classification algorithms on 0.624 million ensembles suggests that most compound diversity functions are better than traditional diversity measures. The population-based Genetic Algorithm was used to search for the best ensembles on a handwritten numerals recognition problem and to evaluate 42.24 million ensembles. The statistical results indicate that compound diversity functions perform better than traditional diversity measures, and are helpful in selecting the best ensembles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.