Abstract

Compost is a valuable organic amendment which affords substantive fertility to soils where applied. A common component of compost fertility is cation exchange capacity (CEC), which has traditionally been determined via standard wet chemistry laboratory methods. This research utilized portable X-ray fluorescence (PXRF) spectrometry to evaluate 74 compost samples from the USA and Canada. PXRF elemental data were used for predicting compost CEC via random forest (RF) regression. Comparison between laboratory-determined vs. PXRF predicted CEC produced the following relationships: R2=0.90, RMSE = 5.41 meq 100 g−1 (model calibration) and R2=0.60, RMSE = 8.07 meq 100 g−1 (model validation). A key advantage of this technique is that the same data used for CEC prediction can also yield insight into other compost parameters of interest such as heavy metal content, plant essential nutrient content, salinity, and pH. Taken collectively, the PXRF approach can provide rapid, on-site analysis of compost which was previously not feasible with conventional methods. Our initial study has established the viability of PXRF for compost CEC determination, with further development on a wider array of feedstocks suggested for future study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.