Abstract

The aim of this study was to investigate the effectiveness of compost in alleviating the negative impacts of salinity on tomato (Solanum lycopersicum cv. Hybrid Guardian F1) plants. An experiment was performed to evaluate the response of plants to compost addition to soil at a rate of 55 g kg−1 soil and NaCl salinity at 0, 50, 100 mM. The results obtained showed a significant decrease in growth-related parameters, i.e. shoot- and root-fresh weight (FW), fruit FW, and fruit yield. Meanwhile, salinity resulted in a significant increase of Na+, electrolyte leakage, lipid peroxidation and hydrogen peroxide in the leaves, but a decrease of N, P, S, K+, Ca2+ and Mg2+ level, as well as K+/Na+ ratio in a dose dependent manner. Under these conditions compost nullified the above negative impacts of salinity caused by 50 mM NaCl and to some extent at 100 mM NaCl. The salinity mediated enhancement in biomarkers of oxidative stress was considerably decreased by compost application which increased the level of ascorbate (ASC) and glutathione (GSH) and the ratios of ASC/dehydroascorbate (DHA) and GSH/glutathione disulfide, as well as the activities of ASC peroxidase, monodehydroascorbate reductase, DHA reductase and GSH reductase in NaCl-treated plants, implying a better reactive oxygen species scavenging system. Data also indicated that compost application resulted in higher activities of leaf carbonic anhydrase, ribulose bisphosphate carboxylase, nitrate reductase and adenosine triphosphate-sulfurylase. These findings collectively suggest that compost plays a pivotal role in inducing salinity tolerance via enhancing an efficient antioxidant system and key C, N and S assimilatory enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.