Abstract

Tree series transformations computed by bottom-up and top-down tree series transducers are called bottom-up and top-down tree series transformations, respectively. (Functional) compositions of such transformations are investigated. It turns out that the class of bottom-up tree series transformations over a commutative and complete semiring is closed under left-composition with linear bottom-up tree series transformations and right-composition with boolean deterministic bottom-up tree series transformations. Moreover, it is shown that the class of top-down tree series transformations over a commutative and complete semiring is closed under right-composition with linear, nondeleting top-down tree series transformations. Finally, the composition of a boolean, deterministic, total top-down tree series transformation with a linear top-down tree series transformation is shown to be a top-down tree series transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.