Abstract
For a given integer $d\ge 1$, we consider $\binom{n+d-1}{d}$-color compositions of a positive integer $\nu$ for which each part of size $n$ admits $\binom{n+d-1}{d}$ colors. We give explicit formulas for the enumeration of such compositions, generalizing existing results for $n$-color compositions (case $d=1$) and $\binom{n+1}{2}$-color compositions (case $d=2$). In addition, we give bijections from the set of $\binom{n+d-1}{d}$-color compositions of $\nu$ to the set of compositions of $(d+1)\nu - 1$ having only parts of size $1$ and $d+1$, the set of compositions of $(d+1)\nu$ having only parts of size congruent to $1$ modulo $d+1$, and the set of compositions of $(d+1)\nu + d$ having no parts of size less than $d+1$. Our results rely on basic properties of partial Bell polynomials and on a suitable adaptation of known bijections for $n$-color compositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.