Abstract

We investigate the probability that a random composition (ordered partition) of the positive integer $n$ has no parts occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{`forbidden set'}$ $A$ of multiplicities. This probability is also studied in the related case of samples $\Gamma =(\Gamma_1,\Gamma_2,\ldots, \Gamma_n)$ of independent, identically distributed random variables with a geometric distribution. Nous examinons la probabilité qu'une composition faite au hasard (une partition ordonnée) du nombre entier positif $n$ n'a pas de parties qui arrivent exactement $j$ fois, où $j$ appartient à une série interdite, finie et spécifiée $A$ de multiplicités. Cette probabilité est aussi étudiée dans le cas des suites $\Gamma =(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ de variables aléatoires identiquement distribuées et indépendantes avec une distribution géométrique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.