Abstract

Geometric structures of gas-phase palladium oxide cluster cations, PdnOm+, were investigated for stable compositions by ion mobility mass spectrometry (IMMS) and quantum chemical calculations. Pure metallic (m = 0) and oxygen-deficient (m < n) cluster cations were preferentially obtained from the mass spectra as a result of collision-induced dissociation. Structures of cluster series, Pd3Om+ (m = 1–6), Pd4Om+ (m = 2–8), and Pd5Om+ (m = 3–8), were determined by comparing experimental collision cross sections obtained by IMMS and theoretical collision cross sections of optimized structures by density functional theory calculations. As for the Pd3Om+ cluster cations, structural transition was observed from one-dimensional chains to two-dimensional (2D) branched/2D sheets and finally to three-dimensional (3D) compact structures with increasing m. These 2D and 3D isomers were found to retain their triangular metal-core configuration. 2D sheets and 3D compact isomers that maintain a tetrahedral metal-core confi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.