Abstract

High power density capacitors have been highly demanded in modern electronics and pulsed power systems. Yet the long-standing challenge that restricts achieving high power in capacitors lies in the inverse relationship between the breakdown strength and permittivity of dielectric materials. Here, we introduce poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) into the host poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) to produce PVDF-based copolymer blends, resulting in composition-driven 0-3 type microstructures, featuring nanospheres of P(VDF-TrFE) lamellar crystals dispersed homogeneously in a P(VDF-HFP) matrix together with crystalline phase evolution from the γ-phase to the α-phase. At the critical composition, the TrFE/HFP mole ratio is equal to 1, and the blend film achieves maximum energy storage performance with discharged energy density (Udis) ∼ 24.3 J/cm3 at 607 MV/m. Finite element analyses reveal the relationship between microstructures, compositions, and the distribution of local electric field and polarization, which provide an in-depth understanding of the microscopic mechanism of the enhancement in energy storage capability of the blend films. More importantly, in a practical charge/discharge circuit, the blend film could deliver an ultrahigh energy density of 20.4 J/cm3, i.e., 88.3% of the total stored energy to 20 kΩ load in 2.8 μs (τ0.9), resulting a high power density of 7.29 MW/cm3, outperforming the reported dielectric polymer-based composites and copolymer films in both energy and power densities. The study thus demonstrates a promising strategy to develop high-performance dielectrics for high power capacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call