Abstract
As with the advancement of geographical information systems, non-Gaussian spatial data sets are getting larger and more diverse. This study develops a general framework for fast and flexible non-Gaussian regression, especially for spatial/spatiotemporal modeling. The developed model, termed the compositionally-warped additive mixed model (CAMM), combines an additive mixed model (AMM) and the compositionally-warped Gaussian process to model a wide variety of non-Gaussian continuous data including spatial and other effects. A specific advantage of the proposed CAMM is that it requires no explicit assumption of data distribution unlike existing AMMs. Monte Carlo experiments show the estimation accuracy and computational efficiency of CAMM for modeling non-Gaussian data including fat-tailed and/or skewed distributions. Finally, the model is applied to crime data to examine the empirical performance of the regression analysis and prediction. The result shows that CAMM provides intuitively reasonable coefficient estimates and outperforms AMM in terms of prediction accuracy. CAMM is verified to be a fast and flexible model that potentially covers a wide variety of non-Gaussian data modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.