Abstract

We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and argue that the retention of light elements in the liquid acts as a source of buoyancy that drives a slow but continual mixing of the ocean, enriching it substantially in light elements, and leading to a relatively uniform composition with depth. We first consider the timescales associated with different processes that can redistribute elements in the ocean, including convection, sedimentation, crystallization, and diffusion. We then calculate the steady state structure of the ocean of a neutron star for an illustrative model in which the accreted hydrogen and helium burns to produce a mixture of O and Se. Even though the H/He burning produces only 2% oxygen by mass, the steady state ocean has an oxygen abundance more than ten times larger, almost 40% by mass. Furthermore, we show that the convective motions transport heat inwards, with a flux of ~ 0.2 MeV per nucleon for an O-Se ocean, heating the ocean and steepening the outwards temperature gradient. The enrichment of light elements and heating of the ocean due to compositionally-driven convection likely have important implications for carbon ignition models of superbursts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.