Abstract
This paper gives new confluence proofs for several lambda calculi with permutation-like reduction, including lambda calculi corresponding to intuitionistic and classical natural deduction with disjunction and permutative conversions, and a lambda calculus with explicit substitutions. For lambda calculi with permutative conversion, naive parallel reduction technique does not work, and (if we consider untyped terms, and hence we do not use strong normalization) traditional notion of residuals is required as Ando pointed out. This paper shows that the difficulties can be avoided by extending the technique proposed by Dehornoy and van Oostrom, called the Z theorem: existence of a mapping on terms with the Z property concludes the confluence. Since it is still hard to directly define a mapping with the Z property for the lambda calculi with permutative conversions, this paper extends the Z theorem to compositional functions, called compositional Z, and shows that we can adopt it to the calculi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.