Abstract

During the normal operation of a power system, all the voltages and currents are sinusoids with a frequency of 60 Hz in America and parts of Asia or of 50 Hz in the rest of the world. Forcing all the currents and voltages to be sinusoids with the right frequency is one of the most important problems in power systems. This problem is known as the transient stability problem in the power systems literature. The classical models used to study transient stability are based on several implicit assumptions that are violated when transients occur. One such assumption is the use of phasors to study transients. While phasors require sinusoidal waveforms to be well defined, there is no guarantee that waveforms will remain sinusoidal during transients. In this paper, we use energy-based models derived from first principles that are not subject to hard-to-justify classical assumptions. In addition to eliminate assumptions that are known not to hold during transient stages, we derive intuitive conditions ensuring the transient stability of power systems with lossy transmission lines. Furthermore, the conditions for transient stability are compositional in the sense that one infers transient stability of a large power system by checking simple conditions for individual generators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.