Abstract

Automated verification of multi-threaded programs is difficult. Direct treatment of all possible thread interleavings by reasoning about the program globally is a prohibitively expensive task, even for small programs. Rely-guarantee reasoning is a promising technique to address this challenge by reducing the verification problem to reasoning about each thread individually with the help of assertions about other threads. In this paper, we propose a proof rule that uses rely-guarantee reasoning for compositional verification of termination properties. The crux of our proof rule lies in its compositionality wrt. the thread structure of the program and wrt. the applied termination arguments – transition invariants. We present a method for automating the proof rule using an abstraction refinement procedure that is based on solving recursion-free Horn clauses. To deal with termination, we extend an existing Horn-clause solver with the capability to handle well-foundedness constraints. Finally, we present an experimental evaluation of our algorithm on a set of micro-benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.