Abstract

This paper is concerned with a compositional approach for constructing finite abstractions (a.k.a. finite Markov decision processes) of interconnected discrete-time stochastic control systems. The proposed framework is based on a notion of so-called stochastic simulation function enabling us to use an abstract system as a substitution of the original one in the controller design process with guaranteed error bounds. In the first part of the paper, we derive sufficient small-gain type conditions for the compositional quantification of the distance in probability between the interconnection of stochastic control subsystems and that of their (finite or infinite) abstractions. In the second part of the paper, we construct finite abstractions together with their corresponding stochastic simulation functions for the class of linear stochastic control systems. We apply our results to the temperature regulation in a circular building by constructing compositionally a finite abstraction of a network containing 1000 rooms. We use the constructed finite abstractions as substitutes to synthesize policies compositionally regulating the temperature in each room for a bounded time horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.