Abstract

In this paper we consider stability of large scale interconnected nonlinear systems that satisfy a strict dissipativity property in terms of local storage and supply functions. Existing compositional stability criteria certify global stability by constructing a global Lyapunov function as the (weighted) sum of local storage functions. We generalize these results by unifying spatial composition, i.e., (weighted) sum of local supply functions is neutral, with temporal composition, i.e., (weighted) sum of supply functions over a time cycle is neutral. Two benchmark examples illustrate the benefits of the developed compositional stability criteria in terms of reducing conservatism and constrained distributed stabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call