Abstract

Weighted Markov decision processes (MDPs) have long been used to model quantitative aspects of systems in the presence of uncertainty. However, much of the literature on such MDPs takes a monolithic approach, by modelling a system as a particular MDP; properties of the system are then inferred by analysis of that particular MDP. In contrast in this paper we develop compositional methods for reasoning about weighted MDPs, as a possible basis for compositional reasoning about their quantitative behaviour. In particular we approach these systems from a process algebraic point of view. For these we define a coinductive simulation-based behavioural preorder which is compositional in the sense that it is preserved by structural operators for constructing weighted MDPs from components.For finitary convergent processes, which are finite-state and finitely branching systems without divergence, we provide two characterisations of the behavioural preorder. The first uses a novel quantitative probabilistic logic, while the second is in terms of a novel form of testing, in which benefits are accrued during the execution of tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.