Abstract

Abstract The present work details the development of a compositional model to replicate the heavy hydrocarbon flow in porous reservoir systems under non-isothermal conditions. The mathematical model considers mass and energy conservation equations describing the reactive of natural variables distributed in a multiphase hydrocarbon system. Such natural variable based compositional models better suit fully implicit numerical schemes with inexpensive Jacobian matrix computations. Further, the model accommodates a switch of primary variables for the disappearance and reappearance of a phase. The resulting nonlinear conservation equations are numerically discretized using a block-centered finite-difference scheme and solved with a quasi-Newton based implicit iterative solver. The present model is validated with the thermal profiles presented in the literature for the multiphase flow during the combustion of heavy crude oil in petroleum reservoir system with performance coefficient (R 2), mean absolute error (MBE), and maximum absolute percentage error (MAPE) of about 0.954, 0.37, and 0.01 respectively. The developed compositional model projected 26 and 72 % of light and heavy oil recoveries respectively in about 160 days with a maximum or peak temperature of about 798 K. Further, the thermal and production profiles projected by the sensitivity analysis on various operating parameters are presented. It is noteworthy that the present works aid in providing an economical numerical based tool in evaluating the flow and transport during underground or in-situ combustion process for efficient energy exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.