Abstract

AbstractAn aqueous micellar radical polymerization technique has been used to prepare water‐soluble polyelectrolytes of acrylamide (AM) and sodium 2‐acrylamido‐2‐methylpropanesulfonate (NaAMPS) hydrophobically modified with low amounts (2–4 mol %) of N,N‐dihexylacrylamide (DiHexAM). This synthesis method leads to multisticker polymers, in which the number and length of the hydrophobic blocks vary with the degree of conversion. Kinetic studies show an appreciable compositional heterogeneity for these polymers, in contrast to their neutral analogues (i.e., AM/DiHexAM copolymers). The drift in composition observed for the AM/NaAMPS/DiHexAM terpolymers is attributed to the electrostatic repulsion between the negatively charged growing polymeric chains, located in the aqueous continuous medium, and the anionic sodium dodecyl sulfate micelles, inside of which the hydrophobic monomer is entrapped. It is shown that an optimization of the polymerization process can be achieved, which gives terpolymers of homogeneous and well‐defined compositions. The thickening ability of the hydrophobically modified polyelectrolytes is directly affected by the extent of their compositional heterogeneity: an increase in the sample homogeneity leads to a significant viscosity enhancement and marked elastic properties of the polymer solutions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3261–3274, 2003

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.