Abstract
Phase transition in thermoelectric (TE) material is a double-edged sword-it is undesired for device operation in applications, but the fluctuations near an electronic instability are favorable. Here, Sb doping is used to elicit a spontaneous composition fluctuation showing uphill diffusion in GeTe that is otherwise suspended by diffusionless athermal cubic-to-rhombohedral phase transition at around 700 K. The interplay between these two phase transitions yields exquisite composition fluctuations and a coexistence of cubic and rhombohedral phases in favor of exceptional figures-of-merit zT. Specifically, alloying GeTe by Sb2 Te3 significantly suppresses the thermal conductivity while retaining eligible carrier concentration over a wide composition range, resulting in high zT values of >2.6. These results not only attest to the efficacy of using phase transition in manipulating the microstructures of GeTe-based materials but also open up a new thermodynamic route to develop higher performance TE materials in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.