Abstract

Properties of silicate melts are key to understanding the evolution of the mantles of the Earth and terrestrial planets. Although remarkable progress has been made in first-principle calculations for melts in recent years, structural measurements of silicate melts at in situ high P–T remain one of the most challenging tasks. The study of glasses, kinetically frozen melts, at high pressure can provide valuable insights into related melts in the mantle. We report Raman scattering of MgSiO 3 glass revealing a structural transition at 19–38 GPa, which is associated with increases in the Si O coordination number, and another transition at 65–70 GPa. However, in CaSiO 3 and Mg 2SiO 4 glasses, the former transition occurs at higher pressures by 5–10 GPa and the latter transition is not observed to our maximum pressure (80 GPa), indicating that a less polymerized Si O network increases the transition pressures. Our results suggest that the pressure for the structural transitions in these glasses is influenced strongly by the concentration of network former cations and the ionic size of the network modifiers. This observation may have important implications for compositional differentiation in the early magma ocean and the present-day mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.