Abstract
The CO2-rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the geochemical evolution pathways of various CSW were simulated via equilibrium phase modeling (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO3 water type, but some samples from the KW area were classified as Na-HCO3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO2, deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150°C for the Ca-HCO3 and Na-HCO3 types of CSW, respectively, in the KW area; 138.9°C for the CB CSW; and 93.0°C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO3-type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO3-type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the geochemical evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO2 after its geological storage and to estimate the stability and security of geologically stored CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.