Abstract
The analysis of part I, dealing with the morphological instability of a single interface in a fluid of infinite extent, is extended to the case of a Cartesian plume of compositionally buoyant fluid, of thickness 2 x 0 , enclosed between two vertical interfaces. The problem depends on six dimensionless parameters: the Prandtl number, σ ; the magnetic Prandtl number, σ m ; the Chandrasekhar number, Q c ; the Reynolds number, Re ; the ratio, B v , of vertical to horizontal components of the ambient magnetic field and the dimensionless plume thickness. Attention is focused on the preferred mode of instability, which occurs in the limit Re ≪1 for all values of the parameters. This mode can be either sinuous or varicose with the wavenumber vector either vertical or oblique , comprising four types. The regions of preference of these four modes are represented in regime diagrams in the ( x 0 , σ ) plane for different values of σ m , Q c , B v . These regions are strongly dependent on the field inclination and field strength and, to a lesser extent, on magnetic diffusion. The overall maximum growth rate for any prescribed set of the parameters σ m , Q c , B v , occurs when 1.3< x 0 <1.7, and is sinuous for small σ and varicose for large σ . The magnetic field can enhance instability for a certain range of thickness of the plume. The enhancement of instability is due to the interaction of the field with viscous diffusion resulting in a reverse role for viscosity. The dependence of the helicity and α -effect on the parameters is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.